Additive sparse spanners for graphs with bounded length of largest induced cycle

نویسندگان

  • Victor Chepoi
  • Feodor F. Dragan
  • Chenyu Yan
چکیده

In this paper, we show that every chordal graph with n vertices and m edges admits an additive 4-spanner with at most 2n− 2 edges and an additive 3-spanner with at most O(n log n) edges. This significantly improves results of Peleg and Schäffer from [Graph Spanners, J. Graph Theory 13 (1989) 99–116]. Our spanners are additive and easier to construct.An additive 4-spanner can be constructed in linear time while an additive 3-spanner is constructable in O(m log n) time. Furthermore, our method can be extended to graphs with largest induced cycles of length k. Any such graph admits an additive (k + 1)-spanner with at most 2n− 2 edges which is constructable in O(n k +m) time. © 2005 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Collective Tree Spanners in Graphs with Bounded Genus, Chordality, Tree-Width, or Clique-Width

In this paper we study collective additive tree spanners for special families of graphs including planar graphs, graphs with bounded genus, graphs with bounded tree-width, graphs with bounded cliquewidth, and graphs with bounded chordality. We say that a graph G = (V,E) admits a system of μ collective additive tree r-spanners if there is a system T (G) of at most μ spanning trees of G such that...

متن کامل

Additive Spanners for k-Chordal Graphs

In this paper we show that every chordal graph with n vertices and m edges admits an additive 4-spanner with at most 2n−2 edges and an additive 3-spanner with at most O(n · logn) edges. This significantly improves results of Peleg and Schäffer from [Graph Spanners, J. Graph Theory, 13(1989), 99-116]. Our spanners are additive and easier to construct. An additive 4-spanner can be constructed in ...

متن کامل

Tree-decompositions with bags of small diameter

This paper deals with the length of a Robertson–Seymour’s tree-decomposition. The tree-length of a graph is the largest distance between two vertices of a bag of a tree-decomposition, minimized over all tree-decompositions of the graph. The study of this invariant may be interesting in its own right because the class of bounded tree-length graphs includes (but is not reduced to) bounded chordal...

متن کامل

Spanners for bounded tree-length graphs

This paper concerns construction of additive stretched spanners with few edges for n-vertex graphs having a tree-decomposition into bags of diameter at most δ, i.e., the tree-length δ graphs. For such graphs we construct additive 2δ-spanners with O(δn+n log n) edges, and additive 4δ-spanners with O(δn) edges. This provides new upper bounds for chordal graphs for which δ = 1. We also show a lowe...

متن کامل

Additive Spanners for Circle Graphs and Polygonal Graphs

A graph G = (V, E) is said to admit a system of μ collective additive tree r-spanners if there is a system T (G) of at most μ spanning trees of G such that for any two vertices u, v of G a spanning tree T ∈ T (G) exists such that the distance in T between u and v is at most r plus their distance in G. In this paper, we examine the problem of finding “small” systems of collective additive tree r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Theor. Comput. Sci.

دوره 347  شماره 

صفحات  -

تاریخ انتشار 2005